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Abstract

Human gait analysis is often conducted in clinical and basic research, but many common

approaches (e.g., three-dimensional motion capture, wearables) are expensive, immobile,

data-limited, and require expertise. Recent advances in video-based pose estimation sug-

gest potential for gait analysis using two-dimensional video collected from readily accessible

devices (e.g., smartphones). To date, several studies have extracted features of human gait

using markerless pose estimation. However, we currently lack evaluation of video-based

approaches using a dataset of human gait for a wide range of gait parameters on a stride-

by-stride basis and a workflow for performing gait analysis from video. Here, we compared

spatiotemporal and sagittal kinematic gait parameters measured with OpenPose (open-

source video-based human pose estimation) against simultaneously recorded three-dimen-

sional motion capture from overground walking of healthy adults. When assessing all indi-

vidual steps in the walking bouts, we observed mean absolute errors between motion

capture and OpenPose of 0.02 s for temporal gait parameters (i.e., step time, stance time,

swing time and double support time) and 0.049 m for step lengths. Accuracy improved when

spatiotemporal gait parameters were calculated as individual participant mean values:

mean absolute error was 0.01 s for temporal gait parameters and 0.018 m for step lengths.

The greatest difference in gait speed between motion capture and OpenPose was less than

0.10 m s−1. Mean absolute error of sagittal plane hip, knee and ankle angles between motion

capture and OpenPose were 4.0˚, 5.6˚ and 7.4˚. Our analysis workflow is freely available,

involves minimal user input, and does not require prior gait analysis expertise. Finally, we

offer suggestions and considerations for future applications of pose estimation for human

gait analysis.

Author summary

There is a growing interest among clinicians and researchers to use novel pose estimation

algorithms that automatically track human movement to analyze human gait. Gait analy-

sis is routinely conducted in designated laboratories with specialized equipment. On the
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other hand, pose estimation relies on digital videos that can be recorded from household

devices such as a smartphone. As a result, these new techniques make it possible to move

beyond the laboratory and perform gait analysis in other settings such as the home or

clinic. Before such techniques are adopted, we identify a critical need for comparing out-

come parameters against three-dimensional motion capture and to evaluate how camera

viewpoint affect outcome parameters. We used simultaneous motion capture and left-

and right-side video recordings of healthy human gait and calculated spatiotemporal gait

parameters and lower-limb joint angles. We find that our provided workflow estimates

spatiotemporal gait parameters together with hip and knee angles with the accuracy and

precision needed to detect changes in the gait pattern. We demonstrate that the position

of the participant relative to the camera affect spatial measures such as step length and dis-

cuss the limitations posed by the current approach.

Introduction

Humans have been interested in studying the walking patterns of animals and other humans

for centuries, dating back to Aristotle in the fourth century BC (see Baker [1] for a detailed his-

tory of gait analysis). Gait analysis technologies have evolved from Borelli’s use of staggered

poles to study his own gait to modern tools that include three-dimensional motion capture,

instrumented gait mats, and a variety of wearable devices. Although technological advances

continue to expand our abilities to measure human walking in clinical and laboratory settings,

many limitations persist. Current techniques remain expensive, are often time consuming,

and require specialized equipment or expertise that is often not widely accessible.

Recent progress in video-based pose estimation has enabled automated analysis of the

movements of humans [2–7] and animals [8,9] using only digital video inputs. The learning

algorithms at the core of human pose estimation approaches use networks that are generally

trained on many images of different people (e.g., MPII [2] and COCO [10] datasets), resulting

in robust networks capable of detecting keypoints (e.g., body landmarks) in new images

beyond the training dataset. These software packages are freely available and have the potential

to expand the ability to generate large datasets of human gait data by enabling data collection

in any setting (including the home or clinic) with little cost of time, money, or effort.

Several prior studies have extracted features of human gait using markerless pose estima-

tion [11–17]; however, there remains a critical need for comparisons of these techniques

against simultaneously collected, gold-standard measurements. We regard the following con-

siderations as imperative to evaluate the performance of markerless pose estimation for

human gait analysis: 1) use of a dataset containing overground walking sequences with syn-

chronized three-dimensional motion capture and video recordings, including video record-

ings from multiple perspectives, 2) stride-by-stride comparisons of gait parameters in addition

to comparisons of average gait parameters across walking bouts for individual participants, 3)

comparisons of a wide range of gait parameters including spatiotemporal and kinematic mea-

sures and 4) an approach with no need for additional network processing. In addition, there is

a need for dissemination of a workflow that produces gait parameter outputs from a simple

digital video input that is quick, involves minimal user input and does not require prior gait

analysis expertise.

The goals of this study were two-fold: 1) compare spatiotemporal and kinematic gait

parameters as measured by simultaneous recordings of three-dimensional motion capture and

pose estimation via OpenPose, a freely available human pose estimation algorithm that uses
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Part Affinity Fields to detect up to 135 keypoints (using models of “body”, “foot”, “hand” and

“facial” keypoints) in images of humans [3,6], and 2) provide a workflow and suggestions for

performing automated human gait analysis from digital video. First, we used OpenPose to

detect keypoints in videos of healthy adults walking overground. These videos were provided

in a freely available dataset that includes synchronized digital videos and three-dimensional

motion capture gait data [18]. We then developed a workflow to calculate a variety of spatio-

temporal and kinematic gait parameters from the OpenPose outputs. We compared these

parameters against measurements calculated from the motion capture data and across differ-

ent camera views within the same walking trials to test the robustness of using OpenPose to

estimate gait parameters from different camera viewpoints.

We wish to state upfront that the workflow provided here is simply one approach to human

gait analysis using pose estimation. We tested OpenPose by using the available demo without

modification, as we anticipate that this is the most accessible way for new users with little

expertise in computer science or engineering to run the software. We consider that there may

be opportunity to improve upon the results presented in the current study by adjusting Open-

Pose parameters, using other pose estimation algorithms, or using other methods of video

recording. We do not claim to provide an optimized approach to human gait analysis through

video-based pose estimation, but rather an approach that we found to be easy to use and fast.

Results

We used a dataset [18] containing three-dimensional motion capture and sagittal plane video

recordings from left and right viewpoints of overground walking of healthy adults (Fig 1).

Video recordings were analyzed with OpenPose [3] and subsequent post-processing in

MATLAB (post-processing scripts made freely available at https://github.com/janstenum/

GaitAnalysis-PoseEstimation). Timings of gait events (heel-strikes and toe-offs), spatiotempo-

ral gait parameters (step time, stance time, swing time, double support time, step length and

gait speed) and lower extremity sagittal joint angles of the hip, knee and ankle were indepen-

dently calculated for motion capture and for left and right viewpoints of OpenPose.

Event times

First, we examined how well OpenPose identified common gait events (i.e., heel-strikes and

toe-offs) compared to event times identified in motion capture data (Table 1, leftmost and

middle columns in each section). The group mean difference (a measure of bias between mea-

surement systems) in heel-strike detection between motion capture and OpenPose left (CL) or

right (CR) side views was up to one motion capture frame (10 ms; sampling frequency of

motion capture data was 100 Hz), the group mean absolute difference (a measure of the error

between measurement systems) was up to two motion capture frames (20 ms) and the greatest

difference for any individual heel-strike detection was six motion capture frames (60 ms).

Group mean difference in toe-off detection between motion capture and OpenPose left- or

right-side views was up to two motion capture frames (20 ms), mean absolute difference was

up to three motion capture frames (30 ms) and the greatest difference for any individual toe-

off detection was 11 motion capture frames (110 ms).

Next, we evaluated how event times compared across OpenPose left and right viewpoints

(Table 1, rightmost column in each section). The mean difference and absolute difference in

heel-strike and toe-off events was less than one video frame (40 ms; sampling frequency of

video recordings was 25 Hz); the greatest difference was two (80 ms) and three (120 ms) video

frames for heel-strikes and toe-off events, respectively.
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Fig 1. Overview of laboratory space and workflow. A) Representative image frame of original video recording from left-side sagittal plane view with

diagram of motion capture and video cameras. We used a known distance of 6.30 m between two strips of tape on the floor to dimensionalize pixel

coordinates of OpenPose keypoints. The public dataset [18] that we used is made available at http://bytom.pja.edu.pl/projekty/hm-gpjatk/. See Release

Agreement for copyrights and permissions. B) Workflow of video recordings (available at https://github.com/janstenum/GaitAnalysis-PoseEstimation).

We analyzed video recordings with OpenPose using Google Colaboratory and next processed the data using custom MATLAB scripts.

https://doi.org/10.1371/journal.pcbi.1008935.g001
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Spatiotemporal gait parameters

Temporal parameters–all steps. The group mean difference in temporal gait parameters

(step time, stance time, swing time and double support time; compared for all individual steps

in the walking bouts) between motion capture and OpenPose left- or right-side views was up

to one motion capture frame (10 ms), the mean absolute difference in temporal gait parame-

ters was two motion capture frames (20 ms) and the greatest difference was 10 motion capture

frames (100 ms) (Table 2). Post-hoc tests indicated statistical differences between motion cap-

ture and OpenPose for stance time, swing time and double support (Table 3). Pearson and

intra-class correlation coefficients between motion capture and OpenPose were strong for step

time, stance time and swing time (Fig 2A–2C and Table 3, coefficients between 0.839 and

0.971), but less strong for double support time (Fig 2D and Table 3, coefficients between 0.660

and 0.735).

When comparing OpenPose left- and right-side views, the group mean difference and abso-

lute difference in temporal gait parameters was less than one video frame (40 ms) and the

greatest difference was three video frames (120 ms) (Table 2). Temporal gait parameters were

not statistically different between OpenPose left and right views (Table 3). Pearson and intra-

class correlation coefficients between OpenPose views were strong for step time, stance time

and swing time (Fig 2A–2C and Table 3, coefficients between 0.809 and 0.951), but less strong

for double support time (Fig 2D and Table 3, coefficients between 0.522 and 0.524).

Temporal parameters–individual participant means. Group mean differences and abso-

lute differences in temporal gait parameters (compared for individual participant mean values

across the walking bout) between motion capture and OpenPose left- and right-side views

were up to one motion capture frame (10 ms) and the greatest difference was four motion cap-

ture frames (40 ms) (Table 4). Post-hoc tests indicated statistically significant differences

between motion capture and OpenPose for stance time, swing time and double support time

(Table 5). Pearson and intra-class correlation coefficients between motion capture and

Table 1. Differences in event times for all steps. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-side view. Asterisks (�) denote P< 0.05.

N mean±SD mean±SD range

MC−CL MC−CR CL−CR |MC−CL| |MC−CR| |CL−CR| MC−CL MC−CR CL−CR

Left Heel-Strike Time (s) 107 −0.01±0.02 0.00±0.02 0.00±0.02 0.02±0.01 0.01±0.01 0.01±0.02 [−0.05, 0.06] [−0.05, 0.04] [−0.08, 0.04]

Right Heel-Strike Time (s) 109 −0.01±0.02 −0.01±0.02 0.00±0.02 0.01±0.01 0.01±0.01 0.01±0.02 [−0.04, 0.04] [−0.05, 0.03] [−0.04, 0.04]

Left Toe-Off Time (s) 109 −0.01±0.03 −0.01±0.02 0.00±0.04 0.03±0.02 0.02±0.02 0.02±0.03 [−0.09, 0.06] [−0.08, 0.04] [−0.12, 0.08]

Right Toe-Off Time (s) 107 −0.02±0.02 −0.01±0.03 0.01±0.03 0.02±0.02 0.02±0.02 0.02±0.02 [−0.11, 0.05] [−0.07, 0.07] [−0.04, 0.12]

https://doi.org/10.1371/journal.pcbi.1008935.t001

Table 2. Gait parameters calculated for all steps. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-side view.

N mean±SD mean±SD mean±SD range

MC CL CR MC−CL MC−CR CL−CR |MC−CL| |MC−CR| |CL−CR| MC−CL MC−CR CL−CR

Step Time (s) 185 0.61

±0.08

0.61

±0.08

0.61

±0.08

0.00±0.02 0.00

±0.02

0.00

±0.03

0.02

±0.01

0.02

±0.01

0.02

±0.03

[−0.06,

0.08]

[−0.06,

0.06]

[−0.12,

0.08]

Stance Time (s) 154 0.75

±0.10

0.75

±0.11

0.75

±0.10

−0.01

±0.03

−0.01

±0.02

0.00

±0.03

0.02

±0.02

0.02

±0.02

0.02

±0.02

[−0.10,

0.06]

[−0.06,

0.05]

[−0.08,

0.12]

Swing Time (s) 154 0.46

±0.04

0.45

±0.05

0.45

±0.05

0.01±0.03 0.01

±0.02

0.00

±0.03

0.02

±0.02

0.02

±0.02

0.02

±0.02

[−0.06,

0.07]

[−0.05,

0.07]

[−0.08,

0.08]

Double Support

Time (s)

154 0.14

±0.03

0.15

±0.04

0.15

±0.04

−0.01

±0.03

−0.01

±0.03

0.00

±0.04

0.02

±0.02

0.02

±0.02

0.02

±0.03

[−0.08,

0.05]

[−0.07,

0.07]

[−0.08,

0.08]

Step Length (m) 215 0.598

±0.095

0.606

±0.118

0.598

±0.114

−0.008

±0.059

0.000

±0.059

0.008

±0.094

0.049

±0.033

0.047

±0.035

0.076

±0.056

[−0.106,

0.202]

[−0.112,

0.204]

[−0.282,

0.253]

https://doi.org/10.1371/journal.pcbi.1008935.t002
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OpenPose were strong (Fig 3 and Table 5, coefficients between 0.861 and 0.998) for all tempo-

ral gait parameters.

When comparing OpenPose left- and right-side views, the group mean difference, absolute

difference and the greatest difference were all less than one video frame (40 ms) (Table 4).

Temporal gait parameters were not statistically different between OpenPose left and right

views (Table 5). Pearson and intra-class correlation coefficients between OpenPose views were

strong (Fig 3 and Table 5, coefficients between 0.893 and 0.995) for all temporal gait

parameters.

Step length and gait speed. When step lengths were calculated on a step-by-step basis

(Fig 4A and Table 2), the group mean difference between motion capture and OpenPose left-

or right-side views was less than 0.010 m, mean absolute difference was 0.049 m and the great-

est difference was 0.204 m. The group mean difference between OpenPose left and right views

was less than 0.010 m, mean absolute difference was 0.076 m and the greatest difference was

0.282 m.

The agreement in step length calculations between measurement systems improved when

step length was calculated as individual participant means instead of step-by-step (Fig 4B

and Table 4): group mean difference between motion capture and OpenPose was less than

0.010 m, mean absolute difference was less than 0.020 m and the greatest difference was 0.050

m; group mean difference between OpenPose left- and right-side views was less than 0.010 m,

mean absolute difference was 0.020 m and the greatest difference was 0.057 m. Pearson and

intra-class correlation coefficients also suggest better estimation of step lengths when calcu-

lated as individual participant means: correlation coefficients were higher when step lengths

were calculated as individual participant means (Fig 4B and Table 5, coefficients between

0.927 and 0.973) compared to when calculated for all steps (Fig 4A and Table 3, coefficients

between 0.671 and 0.869).

When examining individual step length data, we occasionally observed large discrepancies

between measurement systems. For example, the maximal difference of step length between

motion capture and OpenPose was 0.204 m, which was substantial given that the length of this

step was measured to be 0.672 m by motion capture (i.e., the discrepancy was greater than 30%

of the step length). We surmised that anterior-posterior position of the participant on the

walkway could have affected how well OpenPose estimated step lengths because parallax and

changes in perspective could have affected the video-based analyses. We therefore performed a

secondary analysis to investigate how anterior-posterior position of the participant along the

walkway affected differences in step lengths between the measurement systems.

When step length differences are plotted against anterior-posterior position of the C7

marker (Fig 5), it is apparent that the anterior-posterior position of the participant along the

walkway affects the step length estimate using OpenPose. When step length is calculated at left

heel-strike from a left (CL) side view (Fig 5A, dark circles), step length differences are positive

Table 3. Statistical tests for gait parameters calculated for all steps. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-side view. Asterisks (�)

denote P< 0.05.

F post-hoc (P) r ICCC-1 ICCA-1

MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR

Step Time 0.2 - - - 0.957� 0.963� 0.911� 0.955� 0.962� 0.911� 0.955� 0.963� 0.911�

Stance Time 9.7� <0.001 <0.001 1.000 0.967� 0.971� 0.951� 0.966� 0.971� 0.950� 0.962� 0.967� 0.950�

Swing Time 12.3� <0.001 <0.001 1.000 0.860� 0.858� 0.810� 0.855� 0.857� 0.809� 0.839� 0.842� 0.810�

Double Support Time 8.0� 0.001 <0.001 1.000 0.691� 0.735� 0.523� 0.678� 0.714� 0.522� 0.660� 0.694� 0.524�

Step Length 1.6 - - - 0.869� 0.857� 0.671� 0.849� 0.843� 0.671� 0.848� 0.844� 0.671�

https://doi.org/10.1371/journal.pcbi.1008935.t003
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(motion capture greater than OpenPose) at the start of the walkway and differences gradually

become negative (motion capture less than OpenPose) as the participant traverses the walk-

way. Differences in step lengths at right heel-strike between motion capture and OpenPose left

(CL) side view show the opposite trend (Fig 5A, light circles): differences are negative (motion

capture less than OpenPose) at the start of the walkway and gradually become positive (motion

capture greater than OpenPose) at the end of the walkway. Note that differences in step length

at left and right heel-strikes overlap and are minimized at the middle of the walkway when the

person is in the center of the field of view of the cameras. These effects can be observed in the

representative images shown in Fig 6.

Group mean difference in gait speed (Fig 4C and Table 4, calculated as the average speed of

the walking trial) between measurement systems was up to 0.01 m s−1, mean absolute differ-

ence was up to 0.04 m s−1 and the greatest difference between measurement systems was

0.09 m s−1. Gait speed was not statistically different between measurement systems and Pear-

son and intra-class correlation coefficients were strong (Table 5, coefficients between 0.964

and 0.986).

Sagittal lower extremity joint kinematics

Next, we examined how well OpenPose estimated sagittal lower extremity joint angles. We cal-

culated sagittal plane hip, knee and ankle angles across the stride cycle that were averaged for

the walking bout of each individual participant (Fig 7A). Mean absolute error of joint angles

between motion capture and OpenPose left- or right-side views were 4.0˚ for the hip, 5.6˚ for

the knee and 7.4˚ for the ankle (Table 6). This suggests that ankle angles were the least accurate

of the three joints when comparing OpenPose to motion capture data. This is supported by

cross-correlation coefficients (measured at time lag zero) showing that the time-varying nature

of joint angles across the gait cycle is better preserved across comparisons between motion

capture and OpenPose for the hip and knee (Fig 7B and Table 7, coefficients between 0.972

and 0.984) than the ankle (coefficients between 0.743 and 0.778). Mean absolute error between

Fig 2. Temporal gait parameters for all individual steps shown for all participants and measurement systems. Panels show A) step time, B) stance time, C)

swing time, and D) double support time. Data shown in blue represent comparisons between motion capture and OpenPose left-side (CL) views, data shown in

red represent comparisons between motion capture and OpenPose right-side (CR) views, and data shown in gray represent comparisons between the two

OpenPose views (CL and CR). Dark circles represent left leg data, light circles represent right leg data. Color schemes and shading are consistent across all

similar figures (Figs 3 and 4). Bar plots on the far right show individual data, group means, and SD to visualize the distribution of the differences observed

between the measurement systems. Results from statistical analyses are shown in Tables 2 and 3.

https://doi.org/10.1371/journal.pcbi.1008935.g002

Table 4. Gait parameters calculated as individual participant means. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-side view.

N mean±SD mean±SD mean±SD range

MC CL CR MC−CL MC−CR CL−CR |MC−CL| |MC−CR| |CL−CR| MC−CL MC−CR CL−CR

Step Time (s) 31 0.61

±0.07

0.61

±0.07

0.61

±0.07

0.00±0.00 0.00

±0.00

0.00

±0.01

0.00

±0.00

0.00

±0.00

0.00

±0.00

[−0.01,

0.01]

[−0.01,

0.01]

[−0.02,

0.01]

Stance Time (s) 31 0.74

±0.09

0.75

±0.09

0.75

±0.09

−0.01

±0.01

−0.01

±0.01

0.00

±0.01

0.01

±0.01

0.01

±0.01

0.01

±0.01

[−0.04,

0.01]

[−0.03,

0.01]

[−0.02,

0.02]

Swing Time (s) 31 0.46

±0.04

0.45

±0.04

0.45

±0.04

0.01±0.01 0.01

±0.01

0.00

±0.01

0.01

±0.01

0.01

±0.01

0.01

±0.01

[−0.01,

0.03]

[−0.02,

0.03]

[−0.02,

0.02]

Double Support

Time (s)

31 0.14

±0.03

0.15

±0.03

0.15

±0.03

−0.01

±0.01

−0.01

±0.01

0.00

±0.01

0.01

±0.01

0.01

±0.01

0.01

±0.01

[−0.03,

0.01]

[−0.03,

0.02]

[−0.03,

0.02]

Step Length (m) 31 0.603

±0.060

0.611

±0.063

0.603

±0.065

−0.008

±0.020

0.000

±0.015

0.008

±0.023

0.018

±0.012

0.011

±0.010

0.020

±0.014

[−0.050,

0.031]

[−0.030,

0.038]

[−0.052,

0.057]

Gait Speed (m s−1) 31 1.00

±0.15

1.02

±0.16

1.01

±0.16

−0.01

±0.04

0.00

±0.03

0.01

±0.04

0.03

±0.02

0.02

±0.02

0.04

±0.02

[−0.09,

0.05]

[−0.06,

0.07]

[−0.09,

0.08]

https://doi.org/10.1371/journal.pcbi.1008935.t004
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OpenPose left and right views were 3.1˚ for the hip, 3.8˚ for the knee and 5.5˚ for the ankle.

Cross-correlation coefficients showed that the time-varying profiles of hip, knee and ankle

angles were well preserved when comparing between OpenPose views (coefficients between

0.880 and 0.992).

When joint angles were assessed along different portions of the walkway, we found that hip

and ankle angles had highest values of mean absolute error at the end and beginning of the

walkway and lowest values toward the center of the walkway (Fig 8). This suggests that the per-

spective of the participant relative to the camera affected hip and ankle angle accuracy when

calculated with OpenPose. Mean absolute errors in knee angles appeared to be invariant to the

position of the participant which suggests that OpenPose knee angles were less sensitive to

changes in perspective along the walkway.

Discussion

As interest in video-based pose estimation of humans [2–7] and animals [8,9] increases, there

is considerable potential for using these approaches for fast, inexpensive, markerless gait mea-

surements that can be done in the home or clinic with minimal technological requirement.

Pose estimation has been used extensively in human gait classification and recognition [12,18–

21]. Here, we provide evidence that pose estimation also shows promise for quantitative spa-

tiotemporal and kinematic analyses of gait that are commonplace in clinical and biomechani-

cal assessments of human walking.

In this study, we aimed to 1) understand how well video-based pose estimation (using

OpenPose) could estimate human gait parameters, and 2) provide a workflow for performing

human gait analysis with OpenPose. We assessed the accuracy of our OpenPose gait analysis

approach by comparing the estimates of spatiotemporal and kinematic gait parameters to mea-

surements obtained by three-dimensional motion capture. We also compared gait parameters

estimated by OpenPose analyses from different camera views. We provide a workflow (https://

github.com/janstenum/GaitAnalysis-PoseEstimation) for potential users to implement in their

own data collection settings and determine whether this approach provides data that are satis-

factorily accurate for their research or clinical needs. We also include our interpretations

below.

The accuracy of all temporal gait parameters (i.e., step time, stance time, swing time and

double support time) was dependent on how well timings of gait events were detected. As a

result, the group mean absolute differences of all temporal parameters between motion capture

and OpenPose were similar: 0.02 s when comparing individual steps or 0.01 s when comparing

individual participant means. The minimal detectable change in temporal gait parameters

obtained using three-dimensional motion capture in inter-session, test-retest experiments of

healthy human gait have been reported to range from 0.02 to 0.08 s [22,23]. The mean absolute

Table 5. Statistical tests for gait parameters calculated as individual participant means. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-side

view. Asterisks (�) denote P< 0.05.

F post-hoc (P) r ICCC-1 ICCA-1

MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR MC v CL MC v CR CL v CR

Step Time 0.7 - - - 0.998� 0.997� 0.995� 0.998� 0.997� 0.995� 0.998� 0.997� 0.995�

Stance Time 9.8� 0.002 0.001 1.000 0.991� 0.992� 0.991� 0.991� 0.992� 0.991� 0.987� 0.988� 0.991�

Swing Time 12.5� <0.001 0.001 1.000 0.963� 0.958� 0.964� 0.963� 0.955� 0.962� 0.941� 0.936� 0.963�

Double Support Time 9.2� 0.002 0.003 1.000 0.909� 0.898� 0.894� 0.909� 0.897� 0.893� 0.873� 0.861� 0.896�

Step Length 3.4� 0.102 1.000 0.202 0.949� 0.973� 0.932� 0.947� 0.970� 0.932� 0.941� 0.971� 0.927�

Gait Speed 2.4 - - - 0.975� 0.986� 0.966� 0.974� 0.985� 0.966� 0.972� 0.986� 0.964�

https://doi.org/10.1371/journal.pcbi.1008935.t005
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errors in temporal parameters obtained with OpenPose in the current study are less than the

differences that may arise from natural variation in the walking pattern between repeated test-

ing sessions. This suggests that OpenPose could detect changes in temporal gait parameters of

Fig 3. Temporal gait parameters calculated as individual participant means shown for all participants and measurement systems. Panels show A) step

time, B) stance time, C) swing time, and D) double support time. Bar plots on the far right show individual data, group means, and SD to visualize the

distribution of the mean differences observed between the measurement systems. Results from statistical analyses are shown in Tables 4 and 5.

https://doi.org/10.1371/journal.pcbi.1008935.g003
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Fig 4. Step length and gait speed comparisons among the different measurement systems. A) Step lengths calculated for all individual steps for all participants

and measurement systems. B) Step lengths calculated as individual participant means for all participants and measurement systems. C) Gait speeds calculated as

individual participant means for all participants and measurement systems. Bar plots on the far right show individual data, group means, and SD to visualize the

distributions of the differences observed between the measurement systems. Results from statistical analyses are shown in Tables 2–5.

https://doi.org/10.1371/journal.pcbi.1008935.g004
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healthy human gait. Note that the short duration of a temporal parameter such as double sup-

port time (mean value of 0.14 s in this study) may have influenced that OpenPose estimated its

value with relatively poorer precision considering that the temporal resolution of video record-

ings was 0.04 s in this study.

From the analysis of differences in step length and anterior-posterior position of the partici-

pant along the walkway (Figs 5 and 6), we identify the following considerations that affect the

estimation of individual step lengths with OpenPose: 1) step length estimation is influenced by

the position of the participant along the field of view of the camera, 2) step length estimation is

influenced by whether step length is measured at left or right heel-strike, and 3) individual step

lengths are estimated most accurately when the person is in the center of the field of view of

the camera. If only averaged step lengths are of interest for each participant—perhaps, for

example, as a summary statistic in a clinical assessment—OpenPose estimated step length with

higher precision in the current study because the systematic errors in step length that occur

due to position along the walkway appear to offset when step lengths are averaged across the

entire walking bout. Note that averaging step length across the walking bout may not increase

accuracy in other scenarios that are different from the current study: e.g., if the participant

walks on a treadmill that is not centered in the field of view of the camera, or if the participant

walks along an overground walkway but the camera is not centered along the section of the

path where the participant is visible. When comparing individual participant mean values of

step length, the group mean absolute difference between motion capture and OpenPose was

less than 0.020 m and the greatest difference was less than 0.060 m. This suggests that Open-

Pose is capable of step length estimation with the accuracy to detect changes in healthy gait, as

these values are less than the minimal detectable change in step length of 0.060 m that have

been reported in inter-session, test-retest experiments of healthy human gait [22,23].

Gait speed was calculated by dividing step length with step time as the averaged speed

across the walking bout. Group mean absolute differences in gait speed between motion cap-

ture and OpenPose was 0.03 m s−1 and the greatest difference was 0.09 m s−1. These values are

less than reported test-retest minimal detectable change in gait speed of healthy humans

[22,23] which suggest that gait speed can be accurately assessed by OpenPose.

Mean absolute errors in sagittal plane hip, knee and ankle angles were 4.0˚, 5.6˚ and 7.4˚,

respectively. Test-retest errors of sagittal plane lower-limb joint angles have previously been

reported to be less than 4˚ [24]. Minimal detectable change in sagittal plane peak flexion or

extension angles have been reported in the range of 4˚ to 6˚ for hip and knee angles and about

4˚ for ankle ankles [25]. Overall, this suggests that hip and knee angles derived with OpenPose

can detect true changes to the gait pattern across test sessions while OpenPose does not possess

the precision to confidently detect small changes in ankle angle.

Our OpenPose workflow relies on several post-processing steps, some of which were com-

pleted manually to clean the data. In about 20% of the video frames analyzed, multiple persons

were detected by OpenPose—as only one person was visible in the videos, the additionally

detected persons were false positive identifications by OpenPose (note: there is an OpenPose

flag available for limiting the maximum number of persons that can be detected in a given

frame, should the user be interested in applying it). In this analysis, we manually checked that

the person tracked by OpenPose was the participant. Person detection may be an important

Fig 5. Differences in step lengths calculated from each measurement system in relation to anterior-posterior

position on the walkway. Dark circles represent left step lengths, light circles represent right step lengths. A)

Differences in step lengths calculated by motion capture and OpenPose left (CL) side views across the walkway. B)

Differences in step lengths calculated by motion capture and OpenPose right (CR) side views across the walkway. C)

Differences in step lengths calculated by OpenPose left (CL) and right (CR) side views across the walkway.

https://doi.org/10.1371/journal.pcbi.1008935.g005
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issue if OpenPose is used to analyze videos in which several individuals are present (e.g., path-

ological gait in which additional persons are present for safety reasons). We also note that left-

right limb identification was switched in about 5% of the analyzed video frames and we

CR

−3 −2 −1 0 1 2 3
distance from center of walkway (m)

CL

be
gi

n

en
d first left heel-strike

walkway position = 2.30 m 

step length, motion capture = 0.58 m
step length, OpenPose, camera CL = 0.38 m

step length, motion capture = 0.58 m
step length, OpenPose, camera CR = 0.66 m

last left heel-strike
walkway position = −1.96 m 

step length, motion capture = 0.61 m
step length, OpenPose, camera CL = 0.65 m

step length, motion capture = 0.61 m
step length, OpenPose, camera CR = 0.55 m

O
pe

nP
os

e,
 c

am
er

a 
C

L
O

pe
nP

os
e,

 c
am

er
a 

C
R

Fig 6. Example image frames of step length errors. Representative image frames taken from OpenPose output videos highlighting the discrepancies in step

length calculation at different positions along the walkway and from different camera views. Note that images from camera CR are reflected across a vertical axis

to make the walking direction consistent across camera views. The public dataset [18] from which the images belong is made available at http://bytom.pja.edu.pl/

projekty/hm-gpjatk/. See Release Agreement for copyrights and permissions.

https://doi.org/10.1371/journal.pcbi.1008935.g006
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Fig 7. Sagittal plane hip, knee and ankle angles. A) Group mean ± SD ensemble sagittal left and right joint angles for the three measurement

systems: motion capture (MC), OpenPose left-side view (CL) and right-side view (CR). For all angles, positive values indicate flexion (or

dorsiflexion) and negative values indicate extension (or plantarflexion). B) Cross-correlation coefficients at time lag zero (individual data,

group means and SD) for individual participant mean joint angle profiles between measurement systems.

https://doi.org/10.1371/journal.pcbi.1008935.g007

Table 6. Mean absolute error comparisons of joint angles. MC: motion capture; CL: OpenPose left-side view; CR:

OpenPose right-side view.

N mean±SD

MC−CL MC−CR CL−CR

hip (˚) left 31 3.8±1.6 4.0±2.1 2.6±0.6

right 31 3.7±2.0 4.0±2.2 3.1±1.3

knee (˚) left 31 5.1±2.1 5.5±2.4 3.5±1.1

right 31 5.6±2.7 5.6±2.9 3.8±1.4

ankle (˚) left 31 6.3±3.4 7.4±4.8 5.5±2.2

right 31 7.4±4.6 6.4±3.8 4.8±1.8

https://doi.org/10.1371/journal.pcbi.1008935.t006
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manually corrected instances of switched limb identification. The manual portions of the

workflow were all based on simple visual inspection of parts of the data and we expect that

users with only a basic knowledge of human motion will be able to complete the workflow.

To apply the OpenPose analysis described in the current study, it is important to consider

the choice of data collection setup. We used a dataset that contained stationary video camera

recordings of sagittal plane views of healthy human gait. It is possible that factors such as cam-

era height and the distance to plane of progression may influence the results. Furthermore,

camera angles that deviate from perpendicular will likely affect results. We expect that tempo-

ral parameters are most robust to changes in the data collection setup as it is likely that gait

events can be reliably detected with a variety of conditions; on the other hand, step lengths and

joint angles are likely more susceptible to be affected by the setup condition (e.g., perspective

changes from different camera angles).

The results of the current study were based on healthy human gait—does pathological gait

affect how well gait parameters and kinematics are estimated with the described workflow? As

an example, factors such as body and limb postures may affect how OpenPose tracks key-

points. If keypoints are tracked differently in pathological gait that may potentially have subse-

quent effects on our workflow and the way in which gait parameters are calculated. We suggest

that separate analyses of a range of gait pathologies are needed to establish the accuracy

obtained with our workflow.

Some prior studies have used OpenPose to investigate particular features of walking or

other human movement patterns [11,12,14,15,26–28]. Our findings align with these reports in

that we found OpenPose to show promise in providing quantitative information about human

movement (in our case, walking). We also showed that OpenPose estimates of individual par-

ticipant’s mean values of human gait parameters are similar across different camera views, an

important confirmation since occlusion is often a primary concern when performing two-

dimensional movement analysis. Even though averaged step lengths across the walking bout

were similar between OpenPose views (mean absolute difference of 0.020 m), we note that step

lengths for individual steps differed by up to 0.282 m between OpenPose views because of the

different perspectives (Figs 5C and 6). We anticipate that in-home and clinical video-based

analyses will be performed on videos taken by smartphone, tablets, or other household elec-

tronic devices. Many of these devices have standard frame rates of 30 Hz during video record-

ing (and capabilities of up to 240 Hz during slow-motion video recording). The frame rate and

resolution of the videos used in our analysis (25 Hz and 960x540, respectively) were lower than

the factory settings of most modern smartphones (30 Hz, 1920x1080), suggesting that accuracy

may even be improved when using household devices.

Many other markerless motion capture approaches exist for human gait analysis. These

include silhouette analyses [29–32], commercially available products like the Microsoft Kinect

Table 7. Cross-correlations of joint angles. MC: motion capture; CL: OpenPose left-side view; CR: OpenPose right-

side view.

N mean±SD

MC v CL MC v CR CL v CR

hip left 31 0.973±0.024 0.972±0.027 0.985±0.007

right 31 0.979±0.022 0.974±0.040 0.977±0.018

knee left 31 0.984±0.012 0.983±0.012 0.992±0.005

right 31 0.980±0.027 0.979±0.027 0.989±0.008

ankle left 31 0.774±0.327 0.751±0.368 0.880±0.119

right 31 0.743±0.354 0.778±0.303 0.898±0.100

https://doi.org/10.1371/journal.pcbi.1008935.t007

PLOS COMPUTATIONAL BIOLOGY Video-based human gait analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008935 April 23, 2021 16 / 26

https://doi.org/10.1371/journal.pcbi.1008935.t007
https://doi.org/10.1371/journal.pcbi.1008935


Start Middle End
0

5

10

15

M
A

E
 h

ip
 (d

eg
)

left

|MC − CL|
|MC − CR|
|CL − CR|

Start Middle End
0

5

10

15

M
A

E
 k

ne
e 

(d
eg

)

Start Middle End
walkway position

0

5

10

15

M
A

E
 a

nk
le

 (d
eg

)

Start Middle End

right

Start Middle End

Start Middle End
walkway position

−20
0

20

0
30
60

−30

0
10

hi
p 

(d
eg

)
kn

ee
 (d

eg
)

an
kl

e 
(d

eg
)

MC
CL
CR

A B

C D

E F

walkway position walkway position

walkway position walkway position

0

5

10

15

M
A

E
 h

ip
 (d

eg
)

0

5

10

15

M
A

E
 k

ne
e 

(d
eg

)

0

5

10

15

M
A

E
 a

nk
le

 (d
eg

)

−20
0

20

0
30
60

−30

0
10

hi
p 

(d
eg

)
kn

ee
 (d

eg
)

an
kl

e 
(d

eg
)

Fig 8. Effect of walkway position on sagittal plane joint angles. Comparisons of joint angles and mean absolute error

(MAE) between measurement systems at three portions of the walkway. The portions were based on the average anterior-

posterior position of the C7 marker in motion capture data throughout each gait cycle. Gait cycles were binned in regions:

‘Start’ spanning anterior-posterior positions less than −0.50 m of the middle of the walkway, ‘Middle spanning position

from −0.50 to 0.50 m, and ‘End’ spanning positions greater than 0.50 m. The number of gait cycles analyzed were 30, 22 and

24 for ‘Start’, ‘Middle’ and ‘End’, respectively, for the left leg and 31, 21 and 26 for the right leg.

https://doi.org/10.1371/journal.pcbi.1008935.g008
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[20,33–38], and a variety of other technologies [18,39–42]. We did not directly compare the

results of our OpenPose analyses to results of any of these other markerless approaches, and

thus we are hesitant to speculate about the relative accuracy of our approach against others.

Given the results of several studies cited above, we consider it likely that some of these methods

could produce more accurate results. However, a significant advantage of video-based pose

estimation with particular relevance for clinic- and home-based gait analysis is that data collec-

tion for pose estimation requires no equipment beyond a digital video recording device,

whereas many of the other methods require expensive, less accessible, and less portable equip-

ment. We further discuss our observations on the pros and cons of using OpenPose for human

gait analysis in the following section.

Suggestions and limitations

Video recordings. Because we did not record the videos used in this study, we did not

experiment with different video recording techniques. However, we expect that recording meth-

ods with higher frame rates (e.g., the slow-motion video recording feature available on most

smartphones), faster shutter speeds, and wider fields of view (and distortion corrected) may

improve the accuracy of video-based gait analyses. It is also likely that changes in lighting, cloth-

ing and footwear of the participant may affect the ability to track specific keypoints. For example,

loose-fitting clothing may introduce more ambiguity into estimations of hip or knee keypoints.

Recording in the home or clinic. To generate estimates of gait parameters that incorpo-

rate spatial information (e.g., gait speed, step length), it is necessary to scale the video. Here,

we accomplished this by scaling the video to known measurements on the ground. This could

be done in the home or clinic by placing an object of known size in the field of view at the

same depth with which the person is walking or use a known anthropometric quantity such as

body height.

The videos used in our study were recorded in a large open room with ample distance

between the participant and the camera. This allowed recording of several strides per trial and

clear sagittal views of the participant. Given the limited availability of large, open spaces in the

home or clinic, we perceive a need for approaches capable of estimating at least spatiotemporal

gait parameters using frontal plane recordings that are more amenable to narrow spaces.

OpenPose is also capable of three-dimensional human movement analysis. However, this

requires multiple simultaneous camera recordings. Because we assumed that most videos

taken in the home or clinic will be recorded by a single device, we limited this study to two-

dimensional analyses of human walking.

Network selection. Here, we used the demo and pre-trained network provided by Open-

Pose because we considered that this is the most accessible approach that is likely to be used by

most new users of OpenPose, especially those who do not have significant expertise in engi-

neering or computer science. Another advantage of using the pre-trained network is that it has

already been trained on thousands of images, saving the user significant time and effort in

training their own network. However, it may be possible to obtain more accurate video-based

analyses by training gait-specific networks from different views (e.g., sagittal, frontal). Simi-

larly, if a user aims to study clinical populations with gait dysfunction (e.g., stroke, Parkinson’s

disease, spinal cord injury) or children, it may be beneficial to train networks that are specific

to each population. Furthermore, we did not compare our workflow to other available pose

estimation algorithms (e.g., DeeperCut [4], DeepLabCut [8], DeepPose [7], AlphaPose [43]).

These approaches are evolving rapidly and are likely to continue to improve in the near future.

Potential sources of error in video-based estimates of gait parameters vs. motion cap-

ture. We considered several potential reasons for discrepancies between the parameters

PLOS COMPUTATIONAL BIOLOGY Video-based human gait analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008935 April 23, 2021 18 / 26

https://doi.org/10.1371/journal.pcbi.1008935


estimated by OpenPose and those measured using three-dimensional motion capture. Some

sources of error may be intrinsic to OpenPose. First and most obvious, OpenPose does not

track movements of the human body perfectly from frame-to-frame. Second, the body key-

points identified by OpenPose are unlikely to be equivalent to the marker landmarks. Open-

Pose relies on visually labeled generalized keypoints (e.g., “ankle”, “knee”) whereas marker

placement relies on manual palpation of bony landmarks (e.g., lateral malleolus, femoral epi-

condyle). Certainly, there may also be some degree of error in the placement of the motion

capture markers.

Other sources of error may be introduced by the video recording processes. We observed

that different perspective toward the edges of the field of view introduced errors into our

OpenPose estimates of parameters that rely on spatial information (e.g., step length, Figs 5 and

6). These errors affected estimates of individual steps but appeared to largely offset one another

when estimating mean parameters for each participant. Furthermore, blurring of individual

frames due to relatively slow shutter speeds and relatively low frame rates may also contribute

to inaccuracies in pose estimation. In the dataset that we analyzed here, participants walked at

a relatively slow speed of about 1.0 m s−1. Tracking faster walking or running could blur

images leading to poorer tracking by pose estimation algorithms.

Conclusions

Here, we observed that pose estimation (using OpenPose) can provide estimates of many

human gait parameters at an accuracy required to detect changes to the gait pattern in healthy

humans. The pose estimation approach used in this study requires only a two-dimensional

digital video input and outputs a wide array of spatiotemporal and kinematic gait parameters.

We identified and discussed features of our approach that we believe may have influenced the

accuracy of the OpenPose estimation of particular gait parameters, and we provided a work-

flow that is available at https://github.com/janstenum/GaitAnalysis-PoseEstimation. We are

optimistic about the potential that this initial study reveals for measuring human gait data in

the sagittal plane using video-based pose estimation and expect that such methods will con-

tinue to improve in the near future.

Material and methods

Ethics statement

We used a publicly available dataset [18] of overground walking sequences from 32 healthy

participants (22 men and 10 women) made available at http://bytom.pja.edu.pl/projekty/hm-

gpjatk/. The dataset included synchronized three-dimensional motion capture files and digital

video recordings of the walking sequences. The dataset does not contain identifiable partici-

pant information and faces have been blurred in the video recordings. Our analyses of these

previously published videos were deemed exempt by the Johns Hopkins Institutional Review

Board.

Walking sequences

The laboratory space in which the participants walked included ten motion capture cameras

and four video cameras that recorded left- and right-side sagittal plane views and front and

back frontal plane views (see Fig 1A for overview of laboratory space). We used a subset of the

data (sequences labelled s1) that consisted of a single walking bout of about five meters that

included gait initiation and termination. We excluded data for one participant because the

data belonged to another subset with diagonal walking sequences. Therefore, we analyzed 31
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total gait trials (one trial per participant). The mean ± SD duration of the video recordings was

5.12 ± 0.73 s.

Data collection

The motion capture cameras (Vicon MX-T40, Denver, CO, USA) recorded three-dimensional

marker positions at 100 Hz. Motion was recorded by tracking markers that were placed on the

seventh cervical vertebrae (C7), tenth thoracic vertebrae (T10), manubrium, sternum, right

upper back and bilaterally on the front and back of the head, shoulder, upper arm, elbow, fore-

arm, wrist (at radius and ulna), middle finger, anterior superior iliac spine (ASIS), posterior

superior iliac spine (PSIS), thigh, knee, shank, ankle, heel and toe.

Four video cameras (Basler Pilot piA1900-32gc, Ahrensburg, Germany) recorded left (cam-

era CL) and right (camera CR) side sagittal plane views and front and back frontal plane views

of the walking sequences at 25 Hz. We only analyzed video recordings of left and right sagittal

plane views. The digital camera images were RBG files with 960x540 pixel resolution. Motion

capture and video recording were synchronized so that the time of every fourth motion cap-

ture data point corresponded to each time point of the video frames. Cameras were mounted

on tripods and the height was set about 1.3 m. The distance from cameras CL or CR to the par-

ticipants was about 3.3 m.

Data processing

Motion capture data had already been smoothed and were therefore not processed further. We

used the following workflow to process sagittal plane video recordings and obtain two-dimen-

sional coordinates of OpenPose keypoints. We first analyzed the video recordings with Open-

Pose using our provided Google Colaboratory notebook and next processed the data using

custom written MATLAB software (also provided). The workflow is shown in Fig 1B and is as

follows (detailed instructions, sample videos, and software for all steps can be found at https://

github.com/janstenum/GaitAnalysis-PoseEstimation):

1. OpenPose analyses

a. We used Google Colaboratory to run OpenPose analyses of the sagittal plane video

recordings. Google Colaboratory executes Python code and allows the user to access

GPUs remotely through Google cloud services. This allows for much faster analysis than

can be executed on a CPU. Note that it was possible to use Google Colaboratory for our

study because we analyzed publicly available videos; users that aim to analyze videos of

research participants or patients may need to run the software locally through a Python

environment to avoid uploading identifiable participant or patient information into

Google Drive if this is not deemed sufficiently secure by the user’s institution. In our

Google Colaboratory notebook, we also provide code for analyzing YouTube videos with

OpenPose should this be of interest to some users.

b. Video recordings were analyzed in OpenPose using the BODY_25 keypoint model that

tracks the following 25 keypoints: nose, neck, midhip and bilateral keypoints at eyes,

ears, shoulders, elbows, wrists, hips, knees, ankles, heels, big toes and small toes.

c. The outputs of the OpenPose analyses yielded: 1) JSON files for every video frame con-

taining pixel coordinates (origin at upper left corner of the video) of each keypoint

detected in the frame, and 2) a new video file in which a stick figure that represents the

detected keypoints is overlaid onto the original video recording. The JSON files were

then downloaded for further offline analysis in MATLAB.
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2. MATLAB processing steps

a. In about 20% of the total number of frames (3,970), OpenPose detected false positive

persons (e.g., from an anatomy poster that was visible in some videos or from tripods

that were visible). We visually inspected all frames in which multiple persons were

detected so that the keypoints tracked were always the keypoints from the participant.

OpenPose consistently assigned the participant as person ID #1 in all frames wherein

multiple persons were detected. We have since updated our Google Colaboratory note-

book to limit OpenPose to identification of one person per video. As a result, we have

not provided this step in our workflow.

b. We changed the pixel coordinate system so that positive vertical was directed upward

and positive horizontal was in the direction of travel. The location of the origin

depended on left (camera CL) or right (camera CR) side views of the video recording.

For the left-side view, the origin was set at the lower right corner; for the right-side view,

the origin was set at the lower left corner. Note that all our further analyses were invari-

ant to the location of the origin.

c. In approximately 5% of the total frames, OpenPose erroneously switched the left-right

identification of the limbs. We visually inspected anterior-posterior trajectories of the

left and right ankle to identify and correct the keypoints hip, knee, ankle, heel, big toe

and small toe in these frames. We also corrected frames in which keypoints on the left

and right legs were identified on the same leg.

d. We filled gaps in keypoint trajectories (i.e., frames where OpenPose did not detect all

keypoints) using linear interpolation for gaps spanning up to 0.12 s (i.e., for gaps span-

ning up to two video frames).

e. We filtered trajectories using a zero-lag 4th order low-pass Butterworth filter with a cut-

off frequency at 5 Hz.

f. Last, we calculated a scaling factor to obtain dimensionalized coordinate values from the

pixel coordinates. The scaling factor (s) was calculated as:

s ¼
distance

pixel length
:

We used the distance between two strips of tapes on the floor at each end of the walkway

that ran parallel to the viewpoints of cameras CL and CR (see Fig 1A). Pixel length was taken as

the horizontal pixel length between the midpoints of each strip of tape. We then calculated

dimensionalized coordinates as:

xdim ¼ s � xpixel;

and

ydim ¼ s � ypixel:

The distance between the strips of tape was not measured during the original data collection

for the dataset and the tape has since been removed from the floor. We therefore estimated the

distance between the strips of tape by: 1) calculating individual scaling factors from each par-

ticipant based on the horizontal distance traversed by left and right ankle markers in motion

capture data and left and right ankle keypoints in OpenPose data; 2) calculating the distance

between the strips of tape for each individual participant; 3) calculating the ensemble mean
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distance. The ensemble mean distance was 6.30 m and we used this fixed value to calculate

scaling factors for each individual participant.

To examine how robustly the known distance was estimated, we also calculated the distance

between the strips of tape by using the ‘CLAV’ marker (placed on the manubrium) from the

motion capture dataset and the neck marker in OpenPose and obtained an ensemble mean

distance of 5.91 m (2.5% reduction relative to the distance of 6.30 m that we used here). This

means that there is a margin of uncertainty associated with the scaling factor that we used to

dimensionalize the pixel coordinates obtained with OpenPose.

Note that the use of the scaling factor assumes that the participants walked perpendicularly

and at a fixed depth relative to the cameras. Barring natural side-to-side fluctuations in gait,

we find that this is a reasonable assumption since net displacement of medio-lateral position of

the C7 marker in the motion capture data from the start to the end of the walking sequence

was (ensemble mean ± SD) 0.069 ± 0.047 m.

We calculated event timings of left and right heel-strikes and toe-offs in motion capture

data and data of OpenPose left (CL) and right (CR) side views by independently applying the

same method to each set of data [44]. Heel-strikes and toe-offs were defined by the time points

of positive and negative peaks of the anterior-posterior ankle trajectories relative to the pelvis

(midpoint of left and right ASIS and PSIS markers in motion capture data; midhip keypoint in

OpenPose data). All processing steps were completed by one researcher (JS).

We calculated the following spatiotemporal gait parameters in the motion capture and

OpenPose data:

• Step time: duration in seconds between consecutive bilateral heel-strikes.

• Stance time: duration in seconds between heel-strike and toe-off of the same leg.

• Swing time: duration in seconds between toe-off and heel-strike of the same leg.

• Double support time: duration in seconds between heel-strike of one leg and toe-off of the

contralateral leg.

• Step length: anterior-posterior distance in meters between left and right ankle markers

(motion capture) or ankle keypoints (OpenPose) at heel-strike.

• Gait speed: step length divided by step time.

For step time, right step refers to the duration until right heel-strike and vice versa for the

left step. For step length, right step refers to the distance between the ankles at right heel-strike

and vice versa for the left step. We calculated step time, stance time, swing time, double sup-

port time and step length for all steps and as averages for individual participants. Gait speed

was calculated from individual participant means of step time and step length.

We calculated sagittal plane hip, knee and ankle angles of left and right legs using two-

dimensional marker (motion capture) and keypoint (OpenPose) coordinates. The hip joint

center in the motion capture data was estimated based on a regression model [45]. We used

the following markers (motion capture) or keypoints (OpenPose) to calculate joint angles: hip

angle was the vector between hip and knee (0˚ is vertical, flexion is positive, extension is nega-

tive); knee angle was the angle formed by the vectors between hip and knee and between knee

and ankle (0˚ is vertical, flexion is positive, extension is negative); ankle angle was the angle

formed by the vectors between knee and ankle and between ankle and toe marker or big toe

keypoint (for motion capture and OpenPose, respectively) (0˚ is horizontal, dorsiflexion is

positive, plantarflexion is negative). All joint angles were calculated as the mean across the

stride cycle of individual participants. Mean absolute errors across the gait cycle were
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calculated for all joint angles between the three measurement systems. We calculated cross-

correlations at time lag zero to assess the similarity between mean joint angle trajectories (i.e.,

one measure per participant) calculated by motion capture and OpenPose left (CL) side view,

by motion capture and OpenPose right (CR) side view, and by OpenPose left (CL) and right

(CR) side views. We assessed the effect of participant position along the walkway by calculating

mean absolute errors of joint angles of individual gait cycles between measurement systems as

a function of the average anterior-posterior position of the C7 marker in motion capture data

throughout each gait cycle. Gait cycles were binned in regions: ‘Start’ spanning anterior-poste-

rior positions less than −0.50 m of the middle of the walkway, ‘Middle spanning position from

−0.50 to 0.50 m, and ‘End’ spanning positions greater than 0.50 m.

Statistical analyses

We obtained gait event (i.e., heel-strike and toe-off) times, spatiotemporal gait parameters and

sagittal joint angles from three measurement systems: motion capture, OpenPose left (CL) and

right (CR) side views. We used one-way repeated measures ANOVA to assess potential differ-

ences in gait parameters and peak joint angles among measurement systems. In the event of a

statistically significant main effect, we performed post-hoc pairwise comparisons with Bonfer-

roni corrections. We calculated Pearson correlation coefficients (r) and intra-class correlation

coefficients (ICCC-1 and ICCA-1) of spatiotemporal gait parameters to assess correlations (r),
consistency (ICCC-1) and agreement (ICCA-1) between 1) motion capture and OpenPose left

(CL) side view, 2) motion capture and OpenPose right (CR) side view and 3) OpenPose left

(CL) and right (CR) side views. We set the level of significance at 0.05 for all analyses.
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